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Shaping of a scroll wave filament by cardiac fibers
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Scroll waves of electrical excitation in heart tissue are implicated in the development of lethal cardiac
arrhythmias. Here we study the relation between the geometry of myocardial fibers and the equilibrium shape
of a scroll wave filament. Our theory accommodates a wide class of myocardial models with spatially varying
diffusivity tensor, adjusted to fit fiber geometry. We analytically predict the exact equilibrium shapes of the
filaments. The major conclusion is that the filament shape is a compromise between a straight line and full
alignment with the fibers. The degree of alignment increases with the anisotropy ratio. The results, being purely
geometrical, are independent of details of ionic membrane mechanisms. Our theoretical predictions have been
verified to excellent accuracy by numerically simulating the stable equilibration of a scroll filament in a model
of the FitzHugh-Nagumo type.
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I. INTRODUCTION

The heart muscle, seen as an excitable medium, has c
plex geometrical features that affect its electrophysiolog
behavior. Prominent among these features is the anisot
of the constituent fibers. The excitation itself can, in a co
mon pathological case, consist of a scroll wave that rota
about a tubelike self-organizing center known as a filam
@1–3#. The present paper is devoted to the effect of fib
shape on filament shape, and is part of a series@4–8# dealing
with how and to what extent cardiac geometry governs
configuration of scroll waves, as characterized by their fi
ments. Our focus is on the fibers’ deviation from the strai
line; in contrast, our earlier work featured rectilinear fibe
with a twist in their orientation. As we shall see, the filame
responds somewhat differently to those two kinds of geo
etry. Whereas the filament was shown to align with t
straight fibers, in the present curvilinear-fiber case it adop
compromise between alignment and the straight-line t
dency that results from its effective tension@9#. The extreme
cases of very weak and very strong anisotropy will produ
rectilinearity and alignment respectively, as one might
pect.

The analysis that follows allows much freedom in t
assumed fiber shape. Nevertheless, the resulting~and non-
trivial! filament shape, if unique, can be predicted witho
approximation. This is unusual in a nonlinear situation
volving a spatially distributed system.

Mathematically, the class of media to be considered
represented by generic models~FitzHugh-Nagumo@10,11#,
Beeler-Reuter@12#, Luo-Rudy @13#, or others!. We use the
standard monodomain formulation, which involves the va
ableu ~the cells’ transmembrane potential! and one or more
other variables (v1 ,v2 ,v3 , . . . )[vW . Their time evolution is
given by

] tu2] i~Di j ] ju!1F~u,vW !50, ~1!

] tvW 1CW ~u,vW !50. ~2!
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HereF andCW are the reaction functions; in our notation w
have$xi%5$x,y,z%, and sums over repeated indices are u
derstood. The diffusivity tensorD has components, given in
the next section, that depend on the space coordinates s
to reflect the local fiber direction.

The word ‘‘fiber’’ needs a comment. It is a convenie
shorthand for visualizing the geometry, in which the fiber
longitudinal direction is that of fastest propagation. On t
other hand, in our mathematical description, there will be
identifiable fibers, but only a local fiber direction; see Fig.

In order to determine the equilibrium configuration of th
filament, we search for a spatial coordinate transformat
that diagonalizes the diffusivity tensor everywhere wh
avoiding the introduction of convection terms. The purpo
is to obtain a new system that supports a steady-state s
tion with a rectilinear filament. The inverse transformation
then applied, and the straight filament acquires the des
shape. For an illustration of the end result, see Fig. 2.

FIG. 1. A slab of excitable medium with the fiber shape d
played as a heavy curve in thexz plane. All fibers are translated
versions of that prototypical shape, which happens to be sinuso
in this illustration. The local fiber slope is defined by the anglea(x)
as shown. For application to the heart muscle, we view thez axis as
the transmural direction, i.e., approximately perpendicular to
adjacent cardiac surfaces.
©2001 The American Physical Society01-1
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The purely geometrical nature of the method yields a p
diction that is independent of the properties responsible
the medium’s excitable behavior. This circumstance con
wide generality to the calculation. Further on in this artic
the theory’s validity is confirmed numerically in three d
mensions. The wave is started with a simple but otherw
arbitrary shape for its filament, and settles quickly into
steady-state mode. All our simulated steady-state scrolls
only agree with the analytic results, but display excelle
stability as well, a feature concerning which the theory h
nothing to say.

II. GEOMETRY OF THE MODEL

A. The medium

As illustrated in Fig. 1, the prototype fiber is contained
the xz plane; the fiber is given for later convenience by w
of its local slopeS(x), assumed to be a finite single-value
function. Thus we set

zfiber~x!5E S~x!dx. ~3!

All fibers in the xz plane are assumed to be obtained fro
parallel translation of the prototype in the6z direction.

FIG. 2. Equilibration of a scroll wave, under different initia
conditions, in the medium of Fig. 1.~a! Initial template, with fila-
mentF parallel to thex axis. ~b! Starting from the configuration o
panel~a!, and after about three rotations, the filament has stabili
into a shape fairly similar to that of the fibers shown in Fig. 1.~c!
When differently started, the filament~solid curve! evolves toward
the same equilibrium state; sequential positions are shown.~The
dashed curve represents a typical fiber.! At t50 the filament is
sinusoidal in thexy plane. Its approximate plane gradually til
~arrow! to match the plane of the fibers at equilibrium (t is in
seconds!. In summary, in our numerical experiments, no matter h
the filament is started, its equilibrium shape is the same; howe
this shape never quite coincides with the fiber’s shape even in
large-time limit.
06190
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Thus, according to the choice of integration constant, Eq.~3!
represents any fiber in the plane. We then obtain the fi
geometry of all other planes from parallel translation of t
xz plane in the6y direction. In summary, all fibers in the
medium are versions of the prototype fiber, parallel tra
lated along any direction contained in theyz plane; the me-
dium is invariant with respect to this set of translations;
theoretical purposes it is therefore taken as unbounde
these two directions.

The diffusivity tensor is most simply described in its d
agonal form, based on the local fiber orientation,

Ddiag5diag~DL ,DT ,DT!. ~4!

In the above, corresponding to the subscriptsL and T, the
principal directions are longitudinal, along the local fibe
transverse, in thexz plane perpendicularly to the fiber; an
again transverse, parallel to they axis. ~In the heart,DL is
larger thanDT by an order of magnitude.!

In order to obtain the diffusivity components in thexyz
frame we apply a rotation about they direction, designed to
achieve the slopeS. We find ~in terms of thex1x2x3 nota-
tion!

D115DL cos2a1DT sin2a,

D225DT ,

D335DL sin2a1DT cos2a, ~5!

D125D215D235D3250,

D135D315~DL2DT!cosa sina,

with a5a(x) obtained from

tana5S ~6!

@see Eq.~3!#. In Di j we therefore have

cos2a51/~S211!,

sin2a5S2/~S211!, ~7!

sina cosa5S/~S211!.

Thus we see that the fibers themselves will not enter
mathematics; only their local direction, given byS, is rel-
evant.

B. The wave and filament

While the medium is constructed to be translationally
variant in both they and z directions, neither of these two
invariances is postulated for the excitation wave. Rather,
deal with a genuinely three-dimensional problem in a cube
sidesDx5Dy5Dz5L.

The mathematics of this article presupposes the existe
of a unique solution for the scroll wave, up to an over
translation parallel to theyz plane. Accordingly, the bound
ary conditions for the propagating variableu will play a sub-
stantive role. For definiteness we assume a single filam
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SHAPING OF A SCROLL WAVE FILAMENT BY . . . PHYSICAL REVIEW E63 061901
that enters and leaves the cube through thex50 andx5L
faces; but uniqueness requires more detail. We can see
in the hypothetical case of a uniform medium, infinite in
directions, including thex direction, uniqueness will brea
down: the~rectilinear! filament can adopt any direction.

Our choice for avoiding this kind of indeterminacy is
enforce zero-flux boundary conditions across those
planes. Explicitly, considering any pointP on a boundary,
and if n5$n1 ,n2 ,n3% is a vector normal to that boundary
P, then we require

niDi j ] ju50 ~8!

at P. In the present case we taken5$1,0,0%, so that Eq.~8!
reads

D1 j] ju50 ~x50,L !. ~9!

In all the following theory and simulations we shall ma
that assumption. The boundary conditions at the remain
four cube faces will be ignored in the analytical work. Th
is, the medium is deemed to be effectively infinite in the6y
and 6z directions. Simulations must, of course, impleme
this with a large enough cube size.

As regards the filament, we shall define it in terms of t
variablesu andvW in Eqs. ~1! and ~2!. We plot the instanta-
neous intersection of chosen contours for two variables,
u and v1, thus obtaining a periodically shifting curve th
delineates a narrow filament tube over time.

III. A SPECIAL DIAGONALIZATION

Let the diffusion operator in Eq.~1! be written in ‘‘ex-
plicit’’ form as ] i(Di j ] j )5Di j ] i] j1Ei] i for some Ei ,
whereEi] i is the convective part of the operator. We loo
for a transformationT of the spatial coordinates (x,y,z)
→(X,Y,Z) such that~a! the diffusivity tensor becomes diag
onal, and~b! the explicit transformed operator has no co
vective terms in the transverse directionsY or Z, i.e., no
terms of the formP]Y or Q]Z . Such terms are known to
cause a drift of the filament@7,14, and references therein#,
and thus are incompatible with the steady state. If convec
is absent, and because of the new medium’s symme
about theX axis, we expect the existence of a stationa
scroll with a rectilinear filament in theX direction. For weak
enough curvature of the fibers, the existence of that scro
guaranteed by continuity. Indeed, with straight fibers
have uniform anisotropy, which is known to support
straight filament. For stronger~and sometimes very strong!
curvatures, our computer simulations still demonstrate
existence of the expected scroll.

Naively, the problem might seem trivial. We have o
tained the actual diffusivity tensor~5! from its diagonal form
~4! through a local rotation. Why not simply invert that ro
tation? The main reason is that it cannot usually be d
even in principle. Although a diffusion tensor can be loca
rotated, a coordinate system in general cannot: two neigh
ing local rotations are in general incompatible.

On a less abstract level, we note that, although Eq.~4!,
with physical eigenvalues, is unique apart from exchange
06190
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coordinate axes, the diagonalization condition can be acc
plished by other than a pure rotation if we allow the eige
values to become formally dependent on (X,Y,Z). The con-
dition of no transverse convection will determine whic
diagonalization process to choose.

We consider candidates from the following class of tra
formations (x,y,z)→(X,Y,Z):

X5x, Y5y,

Z5z2ES

f ~S!dS5z2Ex

f ~S!S8~x!dx, ~10!

where the functionf is as yet undetermined. This workin
assumption, which severely restricts the set of availa
transformations, is motivated in part by the simplicity
what follows, but ultimately by the fact that it will lead to th
appropriate diagonalizationT. @We observe that a naive
straightening of the fibers,Zstr5z2*S(x)dx, cf. Eq. ~3!, al-
though inappropriate, is similar to Eq.~10! in regard to sepa-
ration of coordinates.# With Eqs.~10!, the partial derivatives
now read

]x5]X2 f ~S!S8~X!]Z , ]y5]Y , ]z5]Z , ~11!

where the prime denotes the ordinary derivative.
We next look at the complete diffusion operator in E

~1!. In theXYZ system, this operator can be written gene
cally as

] i~Di j ] j !5AXX]X
21AXZ]X]Z1AZZ]Z

21AYY]Y
21BX]X

1BZ]Z . ~12!

@In consequence of the particular spatial dependence se
in Eq. ~5!, there is no]Y term, and we still haveAYY5DT .#
In general, theA andB coefficients are expected to depen
on position; as mentioned previously, however, we need
determinef (S) so as to enforce

AXZ50, BZ50. ~13!

By inserting Eqs.~11! into ] i(Di j ] j ), we obtain the coeffi-
cients in Eq.~12!. Specifically, we have

AXZ5
2

S211
@2~DL1DTS2!S8 f ~S!1~DL2DT!S#.

~14!

Requiring this to vanish yields

f ~S!5
~DL2DT!S

~DL1DTS2!S8
, ~15!

or else the trivial caseS5S850. Similarly, we have

BZ5]XS R

S211
D , ~16!

where
1-3
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BERENFELD, WELLNER, JALIFE, AND PERTSOV PHYSICAL REVIEW E63 061901
R52~DL1DTS2!S8 f ~S!1~DL2DT!S, ~17!

proportional toAXZ , Eq. ~14!. Remarkably, therefore, we
find R50, or BZ50. Thus, the transformations of type~10!
have the desirable property that, together with the diago
ization requirementAXZ50, they automatically ensure th
absence of convection terms perpendicular to theX axis. In
summary, Eq.~12! has the surviving terms

] i~Di j ] j !5AXX]X
21AZZ]Z

21DT]Y
21BX]X , ~18!

where all coefficients are independent ofY andZ. This for-
mula is as far as we shall need to carry the diagonaliza
procedure. For completeness we nevertheless list the exp
forms of AXX , AZZ , andBX :

AXX5
DL1DTS2

S211
,

AZZ5
DLDT~S211!

DL1DTS2
, ~19!

BX52
2~DL2DT!SS8

~S211!2
.

To conclude this section we must address the bound
conditions in theXYZmedium. We have eliminated anyY or
Z dependence in the transformed diffusivity componen
Therefore any residual perturbation in a lateral direct
would have to be caused by the boundary conditions, in p
ticular Eq.~9!. With the help of Eqs.~5! and~7!, that condi-
tion reads

@~DL1DTS2!]x1~DL2DT!S]z#u50. ~20!

After applying transformation~11! we find that the]Z coef-
ficient is again proportional toAXZ in Eq. ~14!, and thus
vanishes, while the]X coefficient is nonzero. This leaves u
with

]Xu50 ~X50,L !, ~21!

symmetric in the transverse directions. In summary,
usual fiber-adapted no-flux conditions in the actualxyz sys-
tem preserve theY andZ symmetry of the conditions inXYZ
space, at least along the boundary planesX50,L.

The same cannot be said of no-flux conditions at the
eral boundaries~along Y5const orZ5const). Instead we
theoretically assume a medium infinite in theY andZ direc-
tions; in simulations we must then set up the scroll wa
with its filament ‘‘not too close’’ to the lateral boundarie
experience shows that one or two scroll windings amoun
a safe distance.

IV. SHAPE OF THE FILAMENT

In this section we first demonstrate that, based on
form ~18!, the filament in theXYZ system is indeed rectilin
ear, in theX direction, and stationary. To that end we pres
06190
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a constructive definition of a stationary filament. Rectiline
ity and theX direction are simultaneously deduced from t
symmetries of the transformed medium and from the pos
late that the equilibrium shape and orientation of the filam
are unique. Readers may wish to skip these mathema
preliminaries and go over directly to the second part of
section, where we obtain the actual filament shape by me
of the inverse transformation back to the original coordin
system.

A. A unique rectilinear filament in XYZ space

From the new medium’s symmetry about theX axis, as
displayed in Eq.~18!, the filament in theXYZ system might
be expected intuitively to be rectilinear and in theX direc-
tion. However, the actual filament may have a complica
and spatially variable cross section due to the residuaX
dependence of the medium, and, in addition, it may exh
helical features due to the scroll’s chirality. We now co
struct a filament axis that does indeed turn out to be lin
and in theX direction.

From Eqs. ~18! and ~20!, the medium, including its
boundary conditions, is invariant under each reflectionY
→2Y and Z→2Z, as well as under all translations in th
YZ plane. We shall be interested in the effect of these tra
formations on the filaments of scroll wave solutions that
periodic in time, and whose existence we postulate.

As a help in constructing the filament tube, we assu
that when a scroll is sectioned parallel to theYZ plane the
result is a spiral that rotates~not necessarily rigidly! in a
clockwise ~CW! or counterclockwise~CCW! direction ac-
cording to some convention, thus defining two classes,
CW and CCW scrolls. For any scroll, a filament tube c
now be constructed on the basis of two selected variab
sayu andv1. At any given time and in any givenYZ section,
we define a pointF that is the intersection of two contou
lines u5m,v15n (m andn are chosen constants!. Let C be
the spatial orbit ofF over a complete cycle. We similarly
construct the correspondingC, with the samem and n, in
everyYZ section, and regard the combined set of all clos
curvesC as the filament tube. By construction, this tube is
course independent of time.

Before we proceed to derive the filament shape, a furt
assumption is needed: If the direction of rotation, CW
CCW, as well as the ‘‘filament labels’’ (m,n) are given, then
the filament tube is unique up to translations in theYZ plane.
The consequences of doing without that assumption
taken up in Appendix B.

We now improve the characterization of the filament
going over from filament tube to filament axis. Consider,
example, a CW filament tube, and apply the combined
flectionsY→2Y,Z→2Z. The result is still a CW filament
tube, and from the uniqueness assumption it follows that
now have recovered the original filament tube, but transla
in theYZ plane. The translation vector depends on where
origin of theYZ plane is located relative to the original tub
For example, if that origin lies within the tube, the amount
translation is expected to be very small. We now shift theYZ
origin ~two free parameters! until the two-dimensional trans
1-4
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SHAPING OF A SCROLL WAVE FILAMENT BY . . . PHYSICAL REVIEW E63 061901
lation vector vanishes. The newX axis is then defined to be
the filament axis. In summary, the filament axis is a li
parallel to theX axis, such that a centralYZ reflection about
it reproduces the filament tube without translation. Our c
struction has demonstrated the existence of the filament a

B. Filament shape inxyz space

In order to return to the originalxyz system, we select a
~necessarily rectilinear! filament axis, sayY5Z50. Equa-
tions ~10! then yield the desired filament shape,

yfilament50, zfilament5ES

f ~S!dS5Ex

f ~S!S8dx, ~22!

where the functionS5S(x) is considered given. Explicitly
from Eq. ~15!, we have

zfilament5~DL2DT!Ex Sdx

DL1DTS2
. ~23!

This formula, which concludes our mathematical analy
predicts the shape of a curved filament ‘‘axis’’ in a mediu
whose fiber is given by Eq.~3!. A more intuitive version of
Eq. ~23! displays the filament’s slopeSfilament in terms of the
fiber’s slope S and the inverse anisotropy ratior
5DT /DL (0,r,1):

Sfilament5S 12r

11rS2D S. ~24!

We have here the central result of our work, stating that
filament adopts a local slope that is always less than tha
the fiber. Therefore Eq.~24! implies that the filament has a
overall shape which is a compromise between that of
fiber and thex axis. ~The x axis configuration would be the
filament shape in a uniform isotropic medium,r51, under
our no-flux boundary conditions atx50,L.! In the limit
DL /DT→` (r50), the filament approaches the fiber
terms of shape and orientation. The dependences ofSfilament
on Sand onr are separately of considerable interest, and
plotted in Fig. 3. For each value ofr, the nonmonotonicity as
a function ofS should be noted. It allows us to predict tha
where the fiber is steep enough~at the right of the peak!, the
filament will follow the fiber less closely as the fiber slop
increases.

The uniqueness of the solution has played a role in
derivation. Genuine cases of nonuniqueness may in princ
exist, however. For example, the filament shape could bi
cate into a pair of possibilities, both different from Eq.~23!.
One member of the pair is then predictable in terms of
other, as we show in Appendix B. We have seen no s
occurrence in our simulations.

V. NUMERICAL ILLUSTRATIONS

The predictions of Eq.~23! are confirmed by the numeri
cal simulations of stable scrolls. These are based o
06190
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FitzHugh-Nagumo-type model whose details are set ou
Appendix A.

In Figs. 2~A! and 2~B! we show how the scroll evolve
from rectilinear at initiation to a shape rather similar to th
of the fibers. Panel~A! shows the initial scroll with its rec-
tilinear filament. This configuration~stable in uniform isotro-
pic media! becomes unstable when the fibers are curv
Panel~B! shows the scroll after the filament has reached
equilibrium determined by the fibers of Fig. 1.

Figure 2~C! displays the equilibration process for anoth
choice of initial conditions. Unlike the scenario that begi
in Fig. 2~A! with a straight filament and takes place entire
within thexz plane, here the initial filament is chosen to be
curve that resides in thexy plane. After about 1.5 scrol
rotations (t50.1 in the figure!, the approximate plane of th
filament is already seen to be substantially rotated as we
continues to rotate toward the plane of the fibers~the xz
plane!, along which it stabilizes with the same stationa
filament configuration as in Fig. 2~B!, in accordance with
theory.

Figure 4 illustrates the earlier-mentioned effect of the a
isotropyDL /DT on the degree of alignment. Equation~24!,
when written in terms of the inverse of that ratio, shows
fiber-filament alignment that improves with increasin
DL /DT . The left panel of Fig. 4 shows the analytical fila
ment solutions for three anisotropy ratios~16, 9, and 4!: the
higher the anisotropy, the closer the alignment. We now
lect a fiber whose averagez coordinate is equal to that of th
filament. The maximal deviationD between filament and fi-
ber is then taken as a measure of misalignment. In the r
panel we plotD as a function of the anisotropy to demo
strate how alignment improves with anisotropy. The comp
tational results are superimposed for comparison. Un

FIG. 3. Filament slope against fiber slope for different anisot
pies according to formula~24!. With increasing anisotropy, the lo
cal filament slope increases. Points a and b refer to the resul
Fig. 5 further on. The curve labeled ‘‘` ’’ is where filament and
fiber slopes coincide.
1-5
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FIG. 4. Effect of increasing the anisotropy.~a! Analytical solutions~solid curves! for three different anisotropy ratios; the dashed cur
is the fiber shape. As the anisotropy ratio increases from 4 to 16, the alignment improves, decreasing the differenceD between the
amplitudes of fiber and filament.~b! The differenceD, as a function of the anisotropy ratioDL /DT . The numerical results~circles! for
DL /DT54, 9, and 16 are seen to coincide with the prediction~curve!. Full alignment (D50) is predicted in the strong-anisotropy lim
DL /DT→`.
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strong anisotropy, as in cardiac muscle (DL /DT.9), a
rather good alignment should prevail everywhere.

The excellent agreement between theory and nume
solution is demonstrated in Fig. 5 for different fiber shap
In each of these three cases@panels~A!, ~B!, and~C!# we plot
the stationary filament from the numerical scroll wave sim
lation, and trace for comparison the analytically predic
filament, as well as one layer of the actual fibers. Note t
the alignment is less perfect for segments with extre
slope. This circumstance finds its explanation in the n
monotonic curves of Fig. 3, where we plot the theoreti
filament slope against the fiber slope for various degree
anisotropy. The small bumps exhibited in the inset of F
5~B! are a special confirmation of the theory. Panel~C! of
Fig. 5 illustrates a medium with piecewise linear fibers. T
unphysiological shape, with its sharp corners, puts the the
to a severe test. Nevertheless, and remarkably, the simu
scroll rotates around a piecewise linear filament comp
with sharp corners. The curvature at these corners is
course not well defined for either the fiber or the filamen

VI. DISCUSSION

The major result of this study is that the filament of
scroll wave tends to align with the fibers in the excitab
medium and that, for given boundary conditions, the deg
of alignment depends on the anisotropy ratio in a quant
tively predictable manner. Analytically, this result amoun
to the pair of equations~3! and ~23!, which prescribe the
shape of a scroll filament in a given fiber configuration of t
medium. The numerical illustrations of the preceding sect
are in excellent agreement with that theory, sometimes
striking degree, as when the fibers involve sharp corners

Partial alignment can be expected from the followi
qualitative argument. On the one hand, it was found in
case of twisted anisotropy@6,14# that rectilinear filaments
move into alignment with the~rectilinear! fibers; on the other
hand, under isotropic conditions, and when the excitability
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the medium is not too low, filaments ‘‘attempt’’ to minimiz
their length as though they were under mechanical tens
@9#. When the fibers are curved, these two tendencies
incompatible, and Fig. 5 displays a clear compromise
tween them. The degree of anisotropy tilts the balance
way or the other, and, as implied by formula~24!, an infi-
nitely strong anisotropyDL /DT→` yields perfect align-
ment.

How generally should we expect the present results
hold? Our argument is purely geometrical and distinct fro
the specific ionic mechanisms of excitation. Therefore
choice of membrane model is not critical to the validity
our results. The time-dependent details of the approach
equilibrium do, however, depend on the specifics of
model and may vary with its parameters. That time dep
dency is interesting in it own right, and in general can
learned only from numerical simulations as of now. A
though the theory leads to a well-defined equilibrium co
figuration, it has, in its present form, nothing to say abo
stability, which may well be model dependent.~In the nu-
merically tested cases the stability has been excellent.!

We now turn to some cardiological considerations. Scr
waves are considered a major mechanism of severe vent
lar arrhythmias@1–3,15–18#. Unfortunately, owing to the
limitations of present techniques, scrolls are very poo
documented in living tissue as far as their three-dimensio
organization is concerned. Here we have supplied analyt
and computational evidence to guide our expectations.

The approximate alignment that our studies have fou
under a wide range of conditions is one way to underst
the relatively rare observation of sustained spiral waves
the ventricular epicardium. The spirals would be nothing b
short-lived manifestations of transmural~rather than intra-
mural, i.e., fiber-aligned! scrolls @19–21#. Such an interpre-
tation is consistent with quite a number of multiple-electro
studies@22–24,17,18#, and would confirm the likely role of
scroll waves in the maintenance of cardiac arrhythmias.
ternatively, a possible instability of the scroll itself~rather
1-6
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FIG. 5. Theoretical and simulated filaments for different fiber shapes, all withDL /DT59. ~Curves and points have the same meaning
in previous figures.! The small bumps visible in the inset of~b! but not of~a! are due to the nonmonotonicity of the curves in Fig. 3; poi
a and b in the earlier Fig. 3 refer to the present insets. As the fiber in~b! goes through its steepest region, its slope of around 10, plo
horizontally in Fig. 3, goes back and forth through the peak region. In contrast, the slope in~a! has maximum value 2, and therefore nev
becomes steep enough for a crossing of the peak region. The bumps, while far from spectacular in themselves, are the only fine s
see in an otherwise smooth landscape, and thus they are a powerful confirmation for the theory. Note the excellent agreemen
simulations~circles! and theory~solid curves!. Panel~c! displays the remarkable persistence of this agreement even when the fibe
~unphysiologically! piecewise linear. In~c!, the filament was started as a horizontal line atz57.5 mm, but has drifted substantiall
downward before stopping at its final location. This phenomenon, which in no way conflicts with our theory, is permitted by the asy
of the fibers with respect to a 180° rotation in thexz plane.
le
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07
nd

rs

nd
ng
than the orientation of its filament! is emphasized in@1#.
In earlier computer simulations using a realistic who

heart model, some of us@25# have demonstrated the presen
of stable filaments curled around the ventricular apex
following the gross anatomical fiber direction@26–28#. The
present study provides an explanation for such configu
tions.
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APPENDIX A: THE MODEL

We simulate a 15315315 mm3 ventricular free-wall
slab with curved fibers parallel to each other. The fibe
shape is obtained by varying their slope anglea along x.
Three different geometries are used.

~1! Sine-wave shaped fibers,
06190
-

d

a-

’

zfiber~x!5A sin~2px/L !, ~A1!

whereL is the size of the slab andA55 mm.
~2! Hyperbolic-tangent shaped fibers,

zfiber~x!5A tanhk~x2L/2!, ~A2!

whereL andA are as in Eq.~A1! andk is used to adjust the
slope.

~3! Piecewise linearly shaped fibers,

zfiber~x!55
2A

L
x for 0<x,a,

A

L
~6a24x! for a<x<2a,

A

L
~x24a! for 2a,x<L,

~A3!

whereA andL are the same as in the sine wave fibers, a
a5L/3. The construction of the slab consists of obtaini
1-7
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BERENFELD, WELLNER, JALIFE, AND PERTSOV PHYSICAL REVIEW E63 061901
analytically the slopesS(x) of the fibers and the anglea(x),
and then rotating the diffusion tensorD as described by Eq
~5!.

The action potential is simulated using FitzHugh-Nagu
~FHN! type equations in the form described by Eqs.~1! and
~2! with a one-elementvW [v,CW [C ~see also Ref.@29#!; u is
the transmembrane potential andv is the variable that con
trols the currents. The reaction functionsF(u,v) and
C(u,v) are

F~u,v !5H v120u for u,u1 ,

v23u10.15 for u1<u,u2 ,

v115~u21! for u2<u.
~A4!

C~u,v !5H ~v23u!/5 for u,u1 ,

~v23u!/15 for u1<u,u2 ,

~v23u!/5 for u2<u.
~A5!

For the continuity of the piecewise linearF(u,v) we set
u150.15/23 andu2515.15/18.

We impose no-flux~homogeneous Neumann! boundary
conditions of the form

niDi j ] ju50 ~A6!

@in the notation of Eq.~1!#, where theni are the Cartesian
components of the unit vectorn, normal to thexy, xz, and
yz boundary planes. Thus, in component form, the bound
conditions read

D11]xu1D13]zu50 ~x50,L !, ~A7!

]yu50 ~y50,L !, ~A8!

D31]xu1D33]zu50 ~z50,L !. ~A9!

The initial wave is chosen by way of template functio
u(x,y,z),v(x,y,z). For simplicity, the initial filament is rec-
tilinear and parallel to thex axis in all cases except in Fig
2~C!, where it is sinusoidal and lies in thexy plane. It is
always positioned in the middle of the slab.

We integrate the set of Eqs.~1! and~2! using the explicit
Euler method. All derivatives are calculated as standard c
tral differences. The lattice size is 60360360 elements. The
model is scaled to achieve a physiologically reasona
propagation velocity of 0.5 m/s~in the fastest direction! and
a rotational period of about 70 ms. In the majority of sim
lations, the spatial discretization step ish50.2 in all direc-
tions and the time stepDt50.01. Both values are close t
those normally used in FHN simulations@30,31#. In dimen-
sional units, they correspond to 0.25 mm and 0.047 ms,
spectively. The convergence of the numerical solutions
been tested in control runs with a refined mesh ofh50.1 and
Dt50.0025.
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APPENDIX B: NONUNIQUE SOLUTIONS

Our simulations have not demonstrated any cases
nonuniqueness, even if the fibers deviate strongly from
straight line. However, since uniqueness was an impor
assumption of Sec. IV, and since an anomalous equilibra
filament may correspond to alternative and unsuspected
sins of attraction relative to initial conditions, we devote th
Appendix to the hypothetical situation where the uniquen
assumption breaks down. In that case Eq.~23! can no longer
be expected to hold. Instead, the filament should have
‘‘anomalous’’ shape; we shall see that anomalous filame
must occur in pairs. While we give noa priori calculation
for both members of the pair, we do~nontrivially! predict
one member exactly when the other is known.

The discussion is most conveniently conducted fro
within the symmetricXYZ system, as obtained throug
transformation~10!, with S(x) still equal to the fibers’ slope
Eq. ~3!. We ask what happens when, in the symmetricXYZ
system, the equilibrium filament tube is no longer axia
symmetric around any line parallel to theX axis. ~Such a
spontaneously broken symmetry could arise when the
tionary symmetric solution is unstable or nonexistent.! Be-
cause theXYZsystem is itself symmetric, a double reflectio
Y→2Y,Z→2Z will turn the nonsymmetric filament tube
into another physically realizable one, with a distinct r
flected shape. Hence, going back to thexyz system, we ob-
tain two different possible filament shapes, neither of wh
follows Eq.~23!. More generally, we see that nonunique fil
ments will occur in pairs@with, in addition, the solution of
Eq. ~23! if available#. In what follows we pursue in some
detail the question of predicting the exact shape of the s
ond possible filament when the first one has been measu
We keep in mind the practical diagnosis for nonuniquene
when the observed equilibrium filament violates Eq.~23!, we
are led to search for its counterpart.

To reach an explicit formula, we start from a steady-st
scroll wave solutionU[$u,v% in the original system, and
assume that it has the coordinate dependenceU
5U(x,y,z,t). We also assume that its filament does not ob
Eq. ~23!. Therefore we look for a second, different, stead
state scrollU * 5U * (x,y,z,t), obeying the same propagatio
equations, with the same diffusivity tensor and bound
conditions. We now determineU * when U is known. The
method is to apply three successive transformations toU.

~a! Going over to the symmetricXYZ system, gives the
transformed function

UT~X,Y,Z,t !5U S X,Y,Z1EX

f ~S!S8~X!dX,t D ; ~B1!

see Eq.~10!.
~b! Applying the reflectionsY→2Y,Z→2Z will give

another, distinct, solution

U T* ~X,Y,Z,t !5U S X,2Y,2Z1EX

f ~S!S8~X!dX,t D .

~B2!
1-8
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~c! Transforming back to thexyz system, again using Eq
~10! and then Eq.~15! gives

U* ~x,y,z,t !5U S x,2y,2z12Ex

f ~S!S8~x!dx,t D
5U S x,2y,2z12Ex~DL2DT!Sdx

DL1DTS2
,t D .

~B3!

The above is the explicit construction of the second solut
U * .

The corresponding anomalous filament shape is obta
as follows.~Here we can no longer use the symmetry pro
erty that defined a filament line—theX axis—in the unique
n

s.

b-

06190
n

ed
-

case. However, we can use some other recipe like a t
average of the pointF that describes the filament tube at a
fixed values ofX.!

Suppose the first anomalous shape is given parametric
in x by the functionsyfilament(x) and zfilament(x), where we
note that the filament is no longer necessarily confined to
xz plane. Then, directly from Eq.~B3!, we have

yfilament* ~x!52yfilament~x!,

zfilament* ~x!52zfilament~x!12Ex~DL2DT!Sdx

DL1DTS2
. ~B4!

These starred functions give the second anomalous filam
explicitly in terms of the first.
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